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ABSTRACT

The flow fields from a turbulent channel simulation are used to compute the budgets for

the turbulence kinetic energy (k) and its dissipation rate (c). Data from boundary layer

simulations are used to analyze the dependence of the eddy-viscosity damping-function oil

the Reynolds number and the distance from the wall. The computed budgets are used

to test existing near-wall turbulence models of the k-c type. We find that the turbulent

transport models should be modified in the vicinity of the wall. We also find that existing

models for the different terms in the c-budget are adequate in the region away from the

wall, but need modification near the wall. The channel flow is computed using a k-e model

with an eddy-viscosity damping function from the data and no damping functions in the

_-equation. These computations show that the k-profile can be adequately predicted, but

to correctly predict the e-profile, damping functions in the c-equation are needed.

1. INTRODUCTION

Of the models used to predict turbulent flows, a popular model is the two-equation

k-c model. This model gained popularity with the advent of large computers and has been

used extensively for engineering flows even though it fails to correctly predict a number

of flows (e.g., the Stanford AFOSR-HTTM conference proceedings.) The most commonly

used model was developed for high-Reynolds-number flows and is used in wall-bounded

flows in conjunction with wall functions to patch the core region of the flow to the wall

region (for a review see, Rodi, 1980).

The usefulness of a k-c turbulence model that would be valid all the way to the

wall has been recognized early in the use of the model. Widely used models that use wall

corrections to the standard k-_ model are the models of Jones and Launder (1972, hereafter

J&L) and Chien (1982, hereafter CH). Several other models with wall corrections have been

developed and tested for boundary layer flows, each with proposals for damping functions

and modifications to the high-Reynolds-number k-¢ model. Bernard (1986) evaluated

four models by computing the channel flow with these models and found that all models

underpredict the peak in the turbulent kinetic energy characteristic of near-wall flows.

He attributed the failure of the models to poor modeling of the pressure-diffusion term.
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His conclusion is based on comparisons with extrapolations from experimental data in the

y÷ < 10 region. We shall see that the pressure diffusion term in the turbulent kinetic-

energy budget is small compared to the other terms at all y+. In a systematic study, Patel,

Rodi, and Scheuerer (1985) evaluated eight models for boundary layer flow predictions.

They found that three models which are based on the k-t model give similar results; the

model of Lain and Bremhorst (1981) with elaborate damping functions was not superior to

the CH model or a slightly modified J&L model. They also state that further refinement

to the existing models is needed for any of the models to be used with confidence. Tile

suspected weakness of the model is believed to be the closure models used in the t-equation.

The current trend in modeling the t-equation is to introduce ad-hoc damping functions in

the models of the different terms. An exact assessment of the models has not been possible

because it is difficult to accurately measure the dissipation rate of the turbulent kinetic

energy near the wall.

With the advent of both advanced numerical methods and large-scale computers,

full simulations of turbulent flows at low Reynolds numbers (Re) are now possible. Of

interest to the near-wall k-e modeling are the recent simulations of Moser and Moin (1987)

of a curved channel flow, Spalart (1986a,b) of a flow over a flat plate, and Kim, Moin,

and Moser (1987, hereafter KMM) of a channel flow. In the calculation of KMM, the

turbulent flow field for a channel flow at Re = 3300 (based on half the channel width

and centerline velocity) has been computed and the results compared with experimental

data. The physical realism of these computed turbulent flowfields has been validated by

comparing with measured turbulence statistics as well as turbulence structural information

obtained from laboratory experiments.

The data base of KMM is used to compute the budget of the turbulence kinetic

energy (k), and the budget of the dissipation rate of k (e). These budgets are used to

test closures for these equations. The data of Spalart are used to analyze the dependence

of the eddy-viscosity damping function on y+ and the Reynolds number. Finally, results

using an eddy-viscosity damping function with no damping functions in the t-equation

show that the k-profile can be adequately predicted. However, to predict the e-profile,

damping functions in the e-equation are needed.

2. THE AVERAGED EQUATIONS

2.1 The mean momentum equation.

The averaged Navier-Stokes equations for incompressible flows nondimensionalized

with the wall variables u,(= x/_/P, the friction velocity) and v (the kinematic viscosity),

are written as follows:

u,,, + (u, uj),j + = u,,jj (1)

Ui,i = 0

where Ui and u_ represent mean and fluctuating velocities respectively, and P is the mean

pressure. In most simple phenomenological models, a Boussinesq approximation is used to
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close Eq.(1). In this case, the terms ' 'uiu j are approximated as

2
ltt_/t = 2vTSij -- -_k_ij- ij

0

(2)

! Iwhere k = uiui/2 is the turbulent kinetic energy, Sij = (Ui,j + U),i)/2 is the mean strain-

rate tensor, t'T is an eddy viscosity, and 6ij is the Kronecker delta function.

The k-e modelers approximate the eddy viscosity UT as follows (see, for example, Pa(el

et al., 1985):
k s

UT = C.f. -- (3)
(.

where C_ is a model constant, fu is a damping function, and _ is a modified dissipation
# !

ratc of k. Note that _ = ui,)ui, ) + D where D is a function that has the same dimension

' ' • it is chosen so that g vanishes at the wall and g = _ at high-Reynolds
as e _ tti,jui,j)

numbers. Different near-wall k-e models use different expressions for D. Note thai in this

approach, the problem was reduced from deriving equations describing the evolution of

I,_/#u i j to deriving equations for k and e.

2.2 The k-Equation

For an incompressible flow the exact equation governing the (ransporl of k is

k,t + (Ujk),j = Pk + Tk +IIk + D_ - (4)

where the different terms on the right-hand side are given as (rate of ...),

I I

P_ = -uiujS_ j

1
rlk = --(uip'),,

P

Dk =k,jj

f. = Ui,jUi, j

Production

Turbulence transport

Pressure diffusion

Viscous diffusion

Dissipation

Figure 1 shows the various terms computed from the channel data of KMM as a func-

tion of the wall variable y+. The salient feature of this plot is that away from the wall, the

production rate is almost balanced by the dissipation rate. Close to the wall, the produc-

tion rate and dissipation rate are still the dominant terms, but the turbulent transport rate

and viscous diffusion rate are no longer negligible. Only the pressure diffusion rate remains

negligible compared to the other terms. The turbulent diffusion rate has a positive peak



at y+ = fi and a negative peak at y-_ = 15. The viscous diffusion rate and the dissipation

rate are related by the identity

(5)

At tile wall, tile left-hand side of Eq.(5) vanishes and the diffusion rate exactly balances

the dissipation rate. The expansion of the left-hand side of Eq. (5) in Taylor series will

yield _' = O(y +) in the vicinity of the wall and according to the data, it has a positive

slope at the wall. Away from the wall, the second derivative of k is small compared to (or

of the opposite sign as) e which implies that e' is positive throughout the channel. In fact

for homogeneous flows, ,' = e.

Comparison of the budget data in Fig. 1 with the estimates using Laufer's data (see

Townsend, 1980, p. 145, Fig. 5.5) shows that both the turbulence transport and pressure

diffusion terms are overestimated. The viscous diffusion at the wall is underestimated in

Laufer's data which yields a lower dissipation rate at the wall. Our data are consistent

with the budget data of Moser and Moin (1987) for a flow in a curved channel and of

Spalart (1986a,b) for flows over a fiat plate; close to the wall, all simulation data show

that the pressure diffusion term remains small compared to the other terms in the budget.

2.3 The e-Equation

The equation describing the evolution of e is

,,, + = P, (6)

We can identify the different terms on the right-hand side as (rate of ...),

p1 =-2u_,ju_,jSik

=--_ i,k i,rrt '°_km

Production by mean velocity

gradient

Mixed production

193 =_ 2u_ u_,-m-Ui,k m Gradient production

p4 _ "u' ' ' Turbulent production
---- Z, i,k lti,rn lt k,m

•"UI ! 0T, = -L kUi,rnUi,m),k Turbulent transport

2 i i

Pressure transport

D, =e,kk Viscous diffusion

T = 2uS,kmU'i, m Dissipation

Tennekes and Lumley (1972) analyzed the vorticity fluctuation budget which is related

to the above budget for homogeneous flows. They inferred from an order-of-magnitude



analysis that in the high-Reynolds-number regime, the turbulent-production rate (P_)

and dissipation rate (T) dominate the balance equation. However, the difference of these

terms yields a term of the order of the other terms. The various terms in the balance

equation for _ are shown in Fig. 2. The present results indicate that p4 and T are the

largest terms in the core region of the channel in agreement with the analysis of Tennekes

and Lumley. Near the wall, these terms are still large but are not larger than the other

terms. Close to the wall (y+ < 8), the production rate P_ becomes of the same order as

p4. In the range 6 _ y+ < 15, the nfixed-production rate (P_) is of the same order as p4.

3. TURBULENCE MODELS

In the previous section we introduced the eddy-viscosity model to represent the

Reynolds stresses and in turn modeled the eddy viscosity in terms of a damping func-

tion, the turbulence kinetic energy (k), and the dissipation rate of k (_). In turbulence

modeling using k and _, all the terms in the balance equations for k and _ that involve

correlations other than k and e have to be modeled in terms of Ui, k, and e. In this section,

we use the simulation data to show that the eddy-viscosity damping function should be a

function of both the Reynolds number and y+. We also use the simulation data to test

closure models for the k and _ equations.

3.1 Damping the eddy viscosity

In flows where the relevant gradients are in one direction only (e.g., a fully developed

channel or homogeneous shear), the Boussinesq approximation and the definition of the

eddy viscosity will yield the following:

e J k2
ulu_ _ _r = C_f._ (7)

U,2 c

It can be shown that ' ' = O(y+a), and k --- O(y +2) as y+ _ 0. The choice of theultt 2

near-wall behavior of the damping function, f_,, will depend on the near-wall behavior of

_. Using D = -kjj will yield _ = d = O(y +) in the vicinity of the wall.

The equation for the production rate of the turbulence kinetic energy (Pk = ' '- _,lu2 U,2)
can be combined with the definition of the eddy viscosity and the Boussinesq approximation

to yield

c,,I. = (8)

The damping function, f_, should be constructed by examining the behavior of the

individual terms -u'_u'2/l_ and Ph/e' in wall-bounded flows. Figure 3 shows the distribution

of -u_u'_/k as function of y+ from the boundary layer data of Spalart (1986b) for three

Reynolds numbers. The data show that -u_u'2/l¢ is a function of the Reynolds number,

and for large y+, the term seems to asymptote to a value close to 0.3,

= f..(y+, Re) (9)



The variation of P_/e' as a function of y+ was also computed from the data of Spalart

(1986) and KMM (see, Fig. 4). In the vicinity of the wall (y+ < 40), the data show a

reasonable collapse and therefore exhibit dependence only on y+,

Ph/e'= fp/_(y+) (10)

The function fp/E peaks at around y+ = 19 and fp/, = O(y +2) in the vicinity of the wall.

3.2 k-Balance

In the k-equation, the viscous diffusion term need not be modeled, but the pressure-

diffusion term and turbulent-transport term are usually added and modeled as one term,

Tk "+ IIk= (l/Tk,j),j (11)

Figure 5 shows the distribution of the turbulence transport term compared to the eddy-
u I ul IT/viscosity model using u T ----- -- 1 2/tJ,2 from the data. In the vicinity of tile wall, the

model has a different slope than the data would indicate; this can also be shown from a

Taylor-series expansion in the vicinity of the wall.

The production term is modeled by substituting the model for -u_u_ in the production
rate expression,

--u_ulj Ui j = VT2,qij Sij (12)

In this case the data are matched exactly.

3.3 e-Balance

The t-equation is closed by modeling the terms in Eq. 6. To represent the first

two production terms we need an expression for ' ' and u' u'lti,kUj,k k,i k,j in terms of k, e
and other mean quantities. Note that these two terms have the same trace; they are

related for homogeneous flows through the vorticity fluctuation. If we assume that Rotta's

approximation is valid for both terms,

-(u_,_,%,,, + uk,_u_,j) = -C, Te

and substitute the Boussinesq approximation for the Reynolds stresses we obtain:

e

pl -4- P_ = CI -_VT2SijSij

(13)

(14)

This expression is the same as the commonly used model for the production of e; Figure 6

shows that model compared to the exact expression, using the constant recommended by

CH, C1 = 1.35. The model yields a lower peak than the data would indicate. For near-wall

models, the common approach (see Patel et al., 1985) is to introduce a damping function,

- P: + P? (15)
Cl C u k2Sij Sij



Tile term /93 is negligible compared to the other terms in the channel flow, so no

explicit expression is used to model it. We expect the turbulent production term (P_)

to be non-negligible even ill isotropic flows; an appropriate model for this term will be

a function of k and _ and not a function of the mean velocity. Dimensional analysis

yields P_ cx e2/k. The same arguments are used in modeling the dissipation rate of _ as

cx t2/k. The two terms are then combined and modeled propotional to e2/k. However,

near tlle wall e2/k _ oo and the term should be modified for near-wall effects. This is
2

achieved by using the modified dissipation (d' =_- 2 ((k'/2) 2) )of J&L and setting

p4 _ T c, ee"/k. In this case d'/k and e are bounded as y-_ _ 0. Hanjali_ and Launder

(1976) proposed a similar model and from experimental data of grid turbulence, they

inferred that the proportionality factor should be a function of the turbulence Reynolds

number (Ret = k2/¢); therefore, they added a damping function of Ret. We found (by

examining the channel data) that this damping function is an unnecessary complication

to the model. The model for the combined terms is given as

P2- T = k (16)

Figure 7 shows the comparison of this model with the data and with the model of Hanjali(:

and Launder (C2 = 1.8 in their model). The difference between the models is smaller than

the difference between the data and the models. The models adequately compare with the

data in the y+ > 11 range, but underpredict the data close to the wall. We have seen in

Fig. 6 that the production rate is underpredieted in the y+ < 15 region and as we will see

from the computational results, the underprediction of both the dissipation rate and the

production rate are the major source of discrepancy between the predictions and the data.

The common approach in near-wall models is to introduce in conjunction with a damping

function for the production rate of e, a damping function for the dissiaption rate,

T-P (17)
f,2 = C2_._,,/k

The remaining terms in the balance equation of e are transport rate terms, which are

grouped together and modeled using an eddy-viscosity-diffusion model,

(_) (18)T, + II, = _'J .J

where a = 1.3 (J&L and CH). Figure 8 compares the model with the terms representing

the left-hand side of Eq. 18. As in the case for the k-equation, the comparison is not good

in the vicinity of the wall, in fact, it can be shown from Taylor series expansion that this

model does not have the proper asymptotic behavior as y+ _ 0.

4. RESULTS USING k-e MODELS

In our model-testing in the previous section, we assumed that we know the distribution

of U, k, and e; we then tested the model expression. If the models agreed perfectly with

7



the data for all the terms and if the resulting set of equations adnfit a unique solution,

we can expect the computational results to yield accurate predictions. In general, the

agreement is not perfect. For example, the production rate and dissipation rate of e are

not well modeled in the y+ < 15 region; therefore we have no assurance that the model

will yield accurate predictions. In this section, we will compute the channel flow using

the k-e model described in the previous section using the eddy-viscosity-damping function

from the data and no damping functions in the e-equation.

In our prediction of the channel flow we begin with the averaged Navier-Stokes equa-

l.ions and simplify them for the case of a fully developed channel. The boundary conditions

used are U = 0, k = 0, e = k,22 at the wall, and U,2 = k,2 = e,2 = 0 at the centerline

(y+ = Re, = 180). The equations were solved on a nonuniform mesh using the fourth-

order Runga-Kutta method to discretize the equations in time and central differencing for

space discretization. The same numerical scheme was used to carry out three calculations

using the k-_ models of J&L, CH, and the model described in section 3.

The mean velocity profiles as predicted by all models give acceptable results but using

the exact damping function gives a better overall agreement with the data. Figure 9 shows

the k-profiles as predicted by the near-wall models. The model of J&L does not reproduce

the sharp peak in the kinetic energy expected near the wall. The model recommended

by CH predicts a peak at a slightly shifted location, but the level of k is overpredicted in

the y+ > 20 range. When the damping function from the data is used, the peak level is

reproduced at approximately the same y+. The level of k is also better predicted in the

rest of the channel. These predictions indicate that the eddy-viscosity damping function

plays a key role in the prediction of the k-profile.

Figure 10 shows the profiles of e from the three computations. We find that the models

of CH and J&L predict the same total-dissipation-rate e. Near the wall, all models fail to

predict e correctly. The models predict a peak in e at y+ _ 10 whereas the data shows

that e peaks at the wall. However, it is interesting to note that the peak predicted by

the models is at the same location where the data show a local peak. This comparison

indicates that the damping functions in the e-equation will play an important role in our

prediction of the correct e-profile.

5. CONCLUSIONS AND DISCUSSION

In this paper we used turbulence data from a full simulation to compute the terms in

the budgets of the turbulent kinetic energy and of the dissipation rate.

These budgets were used to test closure models for the k and e equations. We find that

the transport models need to be improved near the wall. The closures to the e-equation

are good away from the wall but poor in the vicinity of the wall. We have split the eddy-

viscosity damping function into two functions; one representing the ratio of the production

over a modified e which we find to be function of y+ only, the other representing the
I Iparameter -u_u2/k which we find to be a function of y+ and the Reynolds number.

Computations with the k-e model indicate that the eddy-viscosity damping function

8



plays a key role in the prediction of the k-profile. To improve the prediction of the _-profile,

damping functions in the _-equation need to be introduced. In fact, using the damping

functions f_+2 and f,2 from the data gives a better prediction for the _ profile (see Fig.

11). However, the improvement is not complete. By neglecting p3, we effectively have

lumped the term with the model of p1 + p2 and the damping function for tile production

term should be

=_P: + + P? (19)
Cl C_ k2Sij Sij

Use of the above damping function yields a better _-profile (see Fig. 11). The remainder

of the disagreement must come from the transport terms.
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Figure 1. Terms in the budget of the turbulence kinetic energy, k, in wall coordi-

nates. Pk = production; Tk = turbulent transport; Dk = viscous diffusion; ck = dissipation

rate; Ilk = velocity pressure-gradient.
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Figure 2. Terms in the budget of the dissipation rate of the turbulence kinetic

energy, e, in wall coordinates. P_ = production by mean velocity gradient; p2 = mixed

production; P_ = gradient production; P_ = turbulent production; T_ = turbulent trans-

port; De = viscous diffusion; T = dissipation rate; II, = pressure transport.
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